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C O M B I N E D  M E T H O D  F O R  C A L C U L A T I N G  
T E M P E R A T U R E  FIELDS IN THE S T R U C T U R E  
O F  A I R C R A F T  

V. M. Yudin UDC 536.2:5 i 8.61 

A method is developed which combines the advantages of economical d~fference-grid (a fast operation, 
high accuracy) attd finite-element (arbitrariness of geomett T) methods. 

At the present time there are two trends in numerical methods for calculating the temperature fields in 
structures, i.e., classical difference methods in various modifications and finite-element methods (FEMs), which 
have intercomplementary advantages and drawbacks. 

The difference methods ensure high accuracy of solution and fast operation in using schemes of split- 
ting [1] and other economical algorithms, including the cases of calculating complex composite structures [2]. 
However, the field of  their efficient use is limited by the structures composed of  bodies of  a canonical form. 

The finite-element methods allow one to calculate the structures of an arbitrary form but their accuracy 
and fast operation are substantially lower and the possibilities of their improvement are not clear. 

Therefore, it seems worthwhile to develop a combined computational method based on use of  positive 
aspects of each of the above-mentioned groups o f  methods. 

The most simple way of solving this problem is, by dividing the structure into subregions (substruc- 
tures) of canonical and noncanonical forms, to use the difference solution methods tbr calculation of tempera- 
tures in the first ones and the finite-element methods, in the second ones, thus ensuring algorithms lbr 
noniterative matching of the solutions in the subregions into a common solution tbr the entire structure. The 
following conditions for technological implementation of the method must also be filfilled: the arbitrariness of 
a computational procedure for subregions, the mismatch of the grids and splittings into the elements of adjacent 
subregions, etc. 

For the difference method of elementary balances (MEB), this problem was solved in 12]. 
A thin-walled structure is split by additional fins into subregions. In each subregion, one introduces its 

own grid of splitting, while on each fin, its own independent system of joining nodes, wherein the solutions in 
the adjacent subregions are matched or the boundary conditions are satisfied. Between the joining nodes and 
grid nodes of the subregion located on the fin an interpolation coupling is established, preferably not lower 
than the first order of smoothness. Under the conditions of the symmetric scheme of  splitting by the MEB at 
each time step with the methods of parametric interpolation and trial run an equation of  coupling between the 
boundary heat fluxes and temperatures at the joining nodes is constructed. The expressions of the heat fluxes 
obtained for each subregion in terms of the temperatures at the joining nodes are substituted into the balance 
equations at these nodes and in this manner a system of equations for the temperatures at all the joining nodes 
of the structure is formed. Upon determination, by solving this system, of the temperatures at the joining nodes 
the values of the heat fluxes at these nodes for each subregion are calculated. By means of interpolation, the 
heat fluxes at the boundary grid nodes are found, and by the symmetric scheme of  splitting using the trial-run 
method the temperatures at all the grid nodes of the subregion are calculated. 

In the FEM, the noniterative matching of the solutions between the subregions is conducted via the 
temperatures at the finite-element nodes and via the mean-integral heat flux through the element side, which 
corresponds to the heat flux at the midpoint of  the side. 
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Fig. 1. Computational scheme of the subregion for the FEM: the centers 
of  boundary sides of the finite elements are denoted by the circles; the 
joining nodes are denoted by the small squares. 

To ensure the above-noted reproducibility conditions in the noniterative matching of  the difference and 
finite-element solutions and also of the latter with each other in inconsistent splitting of  the adjacent subre- 
gions, it is necessary within the framework of the finite-element solution to determine the relationship between 
the heat fluxes and temperatures at the joining nodes, which generally do not coincide with the nodes of  the 
finite-element splitting of the subregion. 

Let us consider a triangular subregion, on the fins of  which length-variable heat fluxes are prescribed. 
We divide the subregion into the elements as is shown in Fig. 1. Here, the joining nodes are denoted by the 
small squares, and the centers of  the element sides coincident with the boundary of the region, by the circles, 

where i = 1 . . . . .  I are the numbers of the finite-element splitting nodes. 
We assume that the number of splitting elements of  the subregion along the side, equal to N, provides 

a rather accurate simulation of the process of heat propagation in the subregion, while the number of joining 
nodes Kj < N, j = 1, 2, 3 is selected so that the interpolation polynomials, constructed at these nodes, describe 
with sufficient accuracy the distribution over the side of  the temperature and the heat flux, which, in accord- 
ance with the physics of the process, are smooth functions. 

Having denoted the temperature at the internal nodes of the finite-element model by Ti and at the 
boundary nodes by Tib, and the heat fluxes at the midpoints of  the boundary sides of  the elements on the jth 
side of the contour by qj, (n is the ordinal number of  the point from the beginning of the side), we can write 
a system of finite-element equations for the subregion considered in the lbllowing form: 

B4)~Tb)_ (~)/0q/+ / F2) (l) 
where q is the heat flux density vector at the centers of  the boundary sides of the elements; T and T b are the 
temperature vectors at the internal and boundary nodes, respectively, 0 is the zero vector. 

Eliminating the temperatures at the internal nodes from the system of equations (1), we obtain a system 
of 3N equations of  coupling between the temperatures at the boundary nodal points of  the finite-element model 
and the heat fluxes at the centers of  the boundary sides of  the elements 

(B 4 - B 3 B~ 1 B2) T b = C q +  (V 2 - B 3 B~ l F l ) .  (2) 

To obtain the equations of  coupling between the heat fluxes and temperatures at the joining nodes, we 
make use of  the procedures of parametric interpolation. 

Since the heat flux distribution is continuous only within the limits of the subregion side (there are 
discontinuities over  the contour at the comer points), the parametric representation of the vector components q 
in terms of the vector components of the fluxes at the joining nodes q can be obtained independently for each 
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side by the same method of smooth fulfillment that was used in matching the grid-difference solutions [2]. As 

a result, we have 

q = A ~ ,  (3) 

where A is the matrix consisting of  three nonzero blocks of dimensionality N × Kj, (j = 1, 2, 3) positioned on 
the principal diagonal. 

The temperature distribution over the contour is a continuous function having discontinuities at the cor- 
ner points. Therefore, onto the interpolation functions on the sides we must superimpose the conditions of  their 
conjugation at the corner points. In order to ensure this requirement, on each side we introduce into the number 
of  interpolation nodes, in addition to the joining nodes, an initial point of  the side and present the interpolation 
polynomials in the form of 

g 

Ti~)=aj+ ~ bjk~k, j = 1 , 2 , 3 ,  (4) 

where -f = l/Li is the relative coordinate from the beginning of the side; aj and hjk are the unknown coefficients 
of the interpolation functions. 

Assuming that the temperatures at the joining nodes Tjn are prescribed, for determining the unknown 
coefficients we have the ordinary conditions for coincidence of the values of  the interpolation function (of the 
Kith power polynomial) with the prescribed values of the temperatures at the interpolation nodes, which are the 
joining nodes: 

g 
J 

aj+ E bJa{-i~=?'J,,' n = l  . . . . .  Kj, j = 1 , 2 , 3 ,  
k=l 

(5) 

and the additional conditions tor conjugation of the interpolation functions at the comer points of  the subregion 
c o n t o u r "  

K I K2 K3 

a,+ E bll.=a2, a2+ E b2,,=a3, a3+ E b3k=a 1. 
k=l k=l k=l 

(6) 

An immediate solution of the system of equations (5)-(6) will determine the values of  the sought coef- 
ficients ai and h#. 

b~ = M _  1 T~ , (7) 

where a, bt, b2, and b 3 are the vectors of  the coefficients; Tt,  T2, and T3 are the temperature vectors at the 
nodal points of the sides; M -l is the inverse matrix of the system of equations (5)-(6). 

However, in implementation of  the method on a computer, it is more profitable to use the following 
algorithm. Transposing in Eqs. (5) the coefficients a/ into the right side and solving for each side its own 
system of equations, separated from system (5), we obtain the expression for the vector bj in terms of Tj and 
aj: 

bj= M;I Tj- aj Sj , j=1,2,3, (8) 
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where Si = z E mi~ 1 is the sum of the elements mi~ 1. of the inverse matrix Mf I of the separated system of 
i=1 k=l 

for the jth side. The inverse matrices Mj -I depend only on the location of the joining nodes on the equations 

side. 
Substituting Eq. (8) into Eq. (6), we come to the system of three equations 

--S 2 1 / 7 2 ]  = & ,  (9) 

o -s3)ta3) a; 

here s71 = 1 - Si; dj = Y Tj, E mTk I. 
J 

k=l i=1 

From Eqs. (9) we have 

3 

a,= Z 4'a;, 
i=1 

(10) 

where sj, 1 are the elements of the inverse matrix in system (9). 
Thus, the coefficients aj and, by virtue of Eq. (8), also bjk are expressed in terms of the temperatures 

at the joining nodes of the subregion. 
Using the expressions for the coefficients, obtained by any of the methods considered, and interpola- 

tional functions (4), we find the expression for the temperatures at the boundary nodes of the finite-element 
model of  the subregion in terms of the temperatures at the joining nodes 

T b = D ~  ' (11) 

where D is the matrix of coupling; T is the temperature vector at the joining nodes. 
Substitution of Tb from Eq. (11) and q from Eq. (3) into Eqs. (2) gives the system of equations of 

coupling between the heat fluxes and temperatures at the joining nodes 

C q = D T + F  (12) 

(C = CA; D = (B4-B3BT1Be)D; F = F e -  B3BTJF0. 
Solving Eq. (12) for q: 

(13) 
= C -l D T + C - I  F,  

we obtain the sought expressions for the heat fluxes at the joining nodes in terms of  the temperatures at the 
same nodes and also in the case of solving the problem in the subregion by the FEM. 

Substituting the expressions for the heat fluxes, found for all the subregions by the MEB or FEM and 
also from the boundary conditions on the free sides of the subregions, into the heat balance equations at the 
corresponding joining nodes, we come to the system of equations for the temperatures at these nodes 

R 

E qkr 8r----'0' k =  1 ..... K ,  (14) 

r=l 

where R is the number of the subregions joining at the given node, including also the boundary conditions; ~5 
is the subregion thickness; K is the general number of the joining nodes in the structure. 
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Fig. 2. Test problem: I-I11) numbers of  the subregions; 1-8) (with the 
points) numbers of  the fins; 1-5) points at which the solutions of  the prob- 
lem, obtained by various methods, are compared. 

Having determined from the solution of the system of equations (14) the values of the temperatures at 
the joining nodes, it is possible to calculate the temperatures in any subregion on the corresponding difference- 
grid or finite-element grid. 

Without describing here this procedure for the elementary-balance method (see ref. [2]), let us recall its 
basic stages. From the values of  the temperatures at the joining nodes, the heat fluxes at these nodes are found 
and by their interpolation the heat fluxes at the boundary nodes of  the difference grid are determined, and then 
by means of the symmetric scheme of the splitting method using the trial run the values of  the temperatures at 
the internal nodes are calculated. 

In the case of  the FEM we determine the values of  the heat fluxes at the joining nodes from relations 
(13), and the heat fluxes on the boundary sides of the finite elements, from dependences (3). From the solution 
of the system of  equations (2) the values for the temperatures at the boundary nodes of  the finite-element 
model of the subregion are found 

Tb= (B 4 - B 3 B11 B2) -1 Cq+  (B 4 - B 3 B11 B2) -1 (F 2 - B 2 BI ! FI) (15) 

and then the temperatures at the internal nodes are calculated 

T = B I  1 F 1 - B11 B 2 T b . 
(16) 

Thus, the temperature distribution in the structure at this step is completely determined and it is possi- 
ble to pass to the following time step. 

The method developed was checked by comparing with the analytical method and finite-element solu- 
tions of  the problem for a square plate of dimensions L x L made of material with constant thermophysical 
characteristics. At the boundaries of the plate x = L and y = L heat transfer at constant values of the heat 
transfer coefficient t~ and the medium temperature Tm occurs, while at the boundaries x = 0 and y = 0 the 

thermal insulation condition q = 0 is prescribed. The initial temperature of  the plate is constant and equal to 

T0. 
An analytical solution of this problem has the following form: 

h 2 cosPlxcospff exp [ - a  (p~ +p22) t] T - T ° - 1 - 4 Z  Z 
Tm- To 

P ~ P2 
tc 2 ¢p2 + h2) + hl lc  2 ¢p~ + h 2) + hi cos p~C cos p2a 
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TABLE 1. Comparison of  the Results of Solving the Problem (Fig. 2) by the Combined Method with the Analytical 

Solution and Solution by the FEM 

Number 
of point Method of solution 

Analytical 

Combined 
FEM 

Analytical 

Combined 

FEM 

Analytical 

Combined 

FEM 

Analytical 

Combined 

FEM 

Analytical 

Combined 
FEM 

376.7 

370.5 

370.6 

340.7 

337.7 

337.0 

311.8 

310.9 

311.8 

303.1 

302.9 

302.8 

t0 

406.0 

403.6 

403.6 

361.3 

359.8 

359.4 

329.3 

328.0 

327.7 

314.0 

313.1 

312.8 

Time, sec 

50 

520.3 

519.0 

519.1 

469.2 

468.2 

468.0 

437.2 

436.1 

436.0 

414.3 

413.5 

413.2 

100 

615.7 

614.7 

614.9 

571.4 

570.7 

570.5 

543.7 

542.8 

542.7 

523.7 

523.0 

522.7 

301.6 

301.5 

301.4 

307.6 

307.3 

307.1 

396,1 

395.4 

395.1 

507.5 

506.9 

506.5 

200 

767.1 

766.4 

766.5 

734.2 

733.7 

733.5 

713,7 

713.0 

712.9 

698.9 

698.4 

698.2 

686.9 

686.4 

686.1 

where h = cx/)~; a = L/cp; Pn = P2 are the roots of  the equation tan pL = h/p. 
In solving the problem numerically by the method developed, the plate was divided into three subre- 

gions: two triangular subregions and one rectangular subregion. In Fig. 2 we give the numbering of the subre- 

gions, vertices, and fins; the circles indicate the points at which we compare the results of calculations of the 

temperature by the indicated methods. The triangular subregions were split into finite elements in such a man- 

ner that the number of  elements along the side was equal to 9 for the first one and to 8 for the second one, 
while the rectangular subregion was split into 11 elements along theOx axis and into 7 elements along the Oy 
axis. The number of joining nodes was taken to be equal to 6 on the first fin, 5 on the second fin, 7 on the 

third fin, 5 on the fourth, 6 on the fifth, 4 on the sixth, 4 on the seventh, and 6 on the eighth fin. The first 
and last joining nodes on the fin were located at the centers of the first and last elements having the smallest 

dimension among all of  the nodes joining on this fin, whereas the internal nodes were located at the equal 

distance from each other. To calculate the temperatures in the triangular subregions, use was made of the FEM, 
while in the rectangular subregion, the MEB. 

In solving the problem by means of the FEM, we split the plate into 8 elements along the Ox axis and 

into 16 elements along the Oy axis. Here we observe the coincidence of  the splitting nodes in the zone of the 
second subregion with nodes in calculating the temperatures in the plate by the combined method. 

The tbilowing values of the parameters and characteristics are adopted: L = 0.025 m; p = 8000 kg/m3; 

c = 500 J/(kg.K); )~ = 20 W/(m.K); c~ = 160 W/(mZ-K); Tm= 1200 K; T0 = 300 K, At = 5 sec. 
In Table 1, we give the calculated values for the temperatures at the points denoted in Fig. 2. 

The presented results confirm the efficiency of  the combined method and indicate that the method sug- 

gested for matching the solutions on inconsistent grids does not worsen the accuracy of the finite-element so- 
lutions and even ensures their refinement provided that the difference-grid solution method is used in the 

adjacent subregion. 
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N O T A T I O N  

T, temperature; t, time; l, coordinate; L, side length; p, density; c, heat capacity; ~., thermal conducti- 
vity coefficient; ct, heat-transfer coefficient; q, heat flux density; Fl and F2, vectors of free terms; Bl, B2, B3, 
B4, submatrices of the global matrix in a finite-element system of linear equations; C, matrix of the coeffi- 
cients of boundary conditions. Subscripts: b, boundary; 0, initial value; m, medium. 
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